Enhanced Materials from Nature: Nanocellulose from Citrus Waste
نویسندگان
چکیده
منابع مشابه
Enhanced materials from nature: nanocellulose from citrus waste.
Nanocellulose is a relatively inexpensive, highly versatile bio-based renewable material with advantageous properties, including biodegradability and nontoxicity. Numerous potential applications of nanocellulose, such as its use for the preparation of high-performance composites, have attracted much attention from industry. Owing to the low energy consumption and the addition of significant val...
متن کاملManagement of citrus waste by switching in the production of nanocellulose.
Citrus fruit processing industries produce a vast quantity of waste materials as peel and pulp that are not handled properly. In present study, waste generated from citrus has been used for extraction of cellulose and nanocellulose. The aggregated cellulose, derived after alkaline treatment, was acid hydrolysed; resulted in reduction of the size of cellulose fibre. The cellulose showed amorphou...
متن کاملBio-hydrogen production from waste materials
Hydrogen is a valuable gas as a clean energy source and as feedstock for some industries. Therefore, demand on hydrogen production has increased considerably in recent years. Electrolysis of water, steam reforming of hydrocarbons and auto-thermal processes are well-known methods for hydrogen gas production, but not cost-effective due to high energy requirements. Biological production of hydroge...
متن کاملBiogas Production from Citrus Waste by Membrane Bioreactor
Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF) membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present...
متن کاملMechanosorptive creep in nanocellulose materials
The creep behavior of nanocellulose films and aerogels are studied in a dynamic moisture environment, which is crucial to their performance in packaging applications. For these materials, the creep rate under cyclic humidity conditions exceeds any constant humidity creep rate within the cycling range, a phenomenon known as mechanosorptive creep. By varying the sample thickness and relative humi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecules
سال: 2015
ISSN: 1420-3049
DOI: 10.3390/molecules20045908